Abstract

AbstractIn this paper, we present a hierarchical optimization method for finding feasible true 0–1 solutions to finite‐element‐based topology design problems. The topology design problems are initially modelled as non‐convex mixed 0–1 programs.The hierarchical optimization method is applied to the problem of minimizing the weight of a structure subject to displacement and local design‐dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse and then successively refined as needed. At each level of design mesh refinement, a neighbourhood optimization method is used to treat the problem considered.The non‐convex topology design problems are equivalently reformulated as convex all‐quadratic mixed 0–1 programs. This reformulation enables the use of methods from global optimization, which have only recently become available, for solving the problems in the sequence. Numerical examples of topology design problems of continuum structures with local stress and displacement constraints are presented. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call