Abstract

In this research, a hierarchical met-ocean data selection model is proposed to reduce the computational cost in stochastic simulation of operation and maintenance (O&M) and enable rapid evaluation of offshore renewable energy systems. The proposed model identifies the most representative data for each calendar month from the long-term historical met-ocean data in two steps, namely the preselection and the refined selection. The preselection incorporates three distinct metrics to evaluate the characteristics of statistical distributions, including the Jensen–Shannon divergence, the encapsulation of extreme met-ocean conditions, as well as the overall vessel accessibility. For the refined selection, a component of temporal synchrony is devised to emulate dynamic changes of met-ocean conditions. As such, a met-ocean reference year comprising twelve representative historical months is subsequently produced and deployed as the input for O&M stochastic simulation. While this research focuses on the development of a generalised methodology for selecting representative met-ocean data, the proposed statistical method is validated empirically using a case study inspired by real-life floating offshore wind installations in Scotland, e.g., Hywind and Kincardine projects. According to the O&M simulation results with five capacity scenarios, the proposed data selection model reduces the computational cost by up to 97.65% while emulating the original results with minor deviations, i.e., within ±5%. The simulation speed is therefore 43 times quicker. Overall, the proposed met-ocean data selection model attains an excellent trade off between computational efficiency and accuracy in O&M stochastic simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.