Abstract
We develop mathematical models describing the evolution of stochastic age-structured populations. After reviewing existing approaches, we formulate a complete kinetic framework for age-structured interacting populations undergoing birth, death and fission processes in spatially dependent environments. We define the full probability density for the population-size age chart and find results under specific conditions. Connections with more classical models are also explicitly derived. In particular, we show that factorial moments for non-interacting processes are described by a natural generalization of the McKendrick-von Foerster equation, which describes mean-field deterministic behavior. Our approach utilizes mixed-type, multidimensional probability distributions similar to those employed in the study of gas kinetics and with terms that satisfy BBGKY-like equation hierarchies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.