Abstract

This paper contributes to the integrated design issue of urban and rural logistics networks under demand uncertainty. A hierarchical hub location model is proposed, which minimizes the expected total system cost by optimizing the locations, number and capacities of "urban-town‒village" hierarchical logistics hubs. The interactions among the logistics hubs and among the hub‒and‒spoke connections, as well as the hub capacity constraints are explicitly considered in the presence of logistics demand uncertainty. A demand scenario‒based branch‒and‒Benders‒cut algorithm is developed to solve the proposed model. A case study of Jiangling urban‒rural region in Hubei province of China is conducted for the illustration of the model and solution algorithm. The results generated by the proposed algorithm are benchmarked against those obtained by GUROBI solver and the practical scheme being currently implemented in the region. The results showed that the proposed methodology can greatly improve the efficiency of the urban‒rural logistics system in terms of expected total system cost. It is important to explicitly model the demand uncertainty, otherwise a significant decision bias may emerge. The proposed algorithm outperforms the GUROBI solver in terms of problem size solved and computational time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.