Abstract
Numerous patch-based methods have recently been proposed for histological image based breast cancer classification. However, their performance could be highly affected by ignoring spatial contextual information in the whole slide image (WSI). To address this issue, we propose a novel hierarchical Graph V-Net by integrating 1) patch-level pre-training and 2) context-based fine-tuning, with a hierarchical graph network. Specifically, a semi-supervised framework based on knowledge distillation is first developed to pre-train a patch encoder for extracting disease-relevant features. Then, a hierarchical Graph V-Net is designed to construct a hierarchical graph representation from neighboring/similar individual patches for coarse-to-fine classification, where each graph node (corresponding to one patch) is attached with extracted disease-relevant features and its target label during training is the average label of all pixels in the corresponding patch. To evaluate the performance of our proposed hierarchical Graph V-Net, we collect a large WSI dataset of 560 WSIs, with 30 labeled WSIs from the BACH dataset (through our further refinement), 30 labeled WSIs and 500 unlabeled WSIs from Yunnan Cancer Hospital. Those 500 unlabeled WSIs are employed for patch-level pre-training to improve feature representation, while 60 labeled WSIs are used to train and test our proposed hierarchical Graph V-Net. Both comparative assessment and ablation studies demonstrate the superiority of our proposed hierarchical Graph V-Net over state-of-the-art methods in classifying breast cancer from WSIs. The source code and our annotations for the BACH dataset have been released at https://github.com/lyhkevin/Graph-V-Net.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.