Abstract

Building demand-side management is an effective solution for relieving the peak and imbalance problems of electrical grids. How to explore the energy flexibility of buildings and to coordinate a variety of buildings with different energy flexibilities for effective interactions with smart grids are a great challenge. This paper proposes a game theory–based hierarchical demand optimization method for energy flexible buildings for achieving better grid interactions. This method consists of two optimization strategies at the grid and building levels. At the grid level, a demand-price interaction model for buildings and the grid is established to identify the Nash equilibrium solutions based on game theory; these solutions are used to determine the optimized energy demand of buildings and the associated electricity prices by accommodating the interests of all participants involved. At the building level, three types of buildings with different energy flexibilities are investigated to analyze the influence of building management strategies on grid interactions. The effectiveness of the proposed method is verified in a simulated case study. The results show that the optimization method can reduce building operational cost by 3–18%, reduce the fluctuation of the power grid by 30–50%, and ensure that the power grid increases income by 8–20%.

Highlights

  • BackgroundsWith the continuous increase in power consumption and the high penetration of renewable energy generations, peak load and power imbalance have become two major challenges for an electrical grid; these challenges significantly affect the reliability, quality and energy efficiency of the grid (Arteconi et al, 2019)

  • In the interactive optimization of the game built on the power grid, during the low electricity consumption period, the energy consumption demand is consistent with the benchmark energy demand, and the user passively accepts the electricity price set by the grid; during the peak period, the user will consider the economic stimulus of the high price

  • A hierarchical demand optimization method based on game theory is proposed for achieving the optimal grid interaction between smart grids and energy flexible buildings

Read more

Summary

INTRODUCTION

With the continuous increase in power consumption and the high penetration of renewable energy generations, peak load and power imbalance have become two major challenges for an electrical grid; these challenges significantly affect the reliability, quality and energy efficiency of the grid (Arteconi et al, 2019). Energy storage devices/systems (e.g., electric vehicles, batteries, and pumped-storage hydroelectricity) can be employed as operating reserves These methods are usually limited by either geographic. Methods that use incentive benefits (i.e., implement the power demand response programs) to encourage end-users to manage their power usage behaviors are considered a more promising solution for peak load and power imbalance of grids. “Energy flexible buildings” (EFBs), which have the capacity to manage their energy demand and production according to local climate conditions, user needs, and grid requirements, have been proposed by the International Energy Agency (IEA) (Jensen et al, 2017). Buildings have the potential to be an excellent carrier for demand-side energy consumption management to solve grid imbalance

Literature Review
Demand Optimization Results and Strategy Analysis
DISCUSSION
CONCLUSION
DATA AVAILABILITY STATEMENT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.