Abstract

Advanced manufacturing technology (AMT) is a relevant resource that has been extensively used in modern industries around the world with the aim of being competitive and maintaining high levels of quality and performance. There is a wide variety of tools and models available in the literature to support AMT selection and evaluation processes. Usually, they consist of analyses of tangible aspects, such as cost, time, speed, precision, among others; however, some other important aspects are commonly neglected, that is, the case of human factors and ergonomic characteristics. This paper presents a new methodology for the evaluation of ergonomic compatibility of AMT. This methodology may be considered as a decision aid; thus, decision makers might perform their duties in a more complete manner taking into account ergonomic attributes. Fuzzy axiomatic design applications are state of the art methods for decision making, and this paper contributes with a unique application for ergonomic compatibility evaluation for AMT. The first part of the paper presents the findings of an extensive literature review about important ergonomic attributes of AMT. Then, those attributes were originally structured following a multi-attribute axiomatic design approach for AMT ergonomic evaluation under a fuzzy environment. Also, a unique ergonomic compatibility survey was proposed for data collection and an original procedure was developed for AMT evaluation, a numerical example is provided. The ergonomic compatibility concept was tested and validated using the Cronbach's alpha test (α ≥ 0.7), finding that the instrument is suitable for the measurement of the proposed construct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call