Abstract

A previously developed and studied coarse-grained model is used to investigate the properties of bisphenol-A-polycarbonate (BPA-PC) in contact with the Si(001)-(2 × 1) surface. The surface interaction potentials are based on density functional calculations. Both a smooth wall potential and a site-dependent wall potential were used to represent the surface. For both types of surface potential it was found that only the chain ends adsorb and the density profiles and conformations in each case are similar. The site-dependent surface slows the dynamics of the polymer at the interface by an order of magnitude compared to the bulk dynamics for the chain lengths considered. The diffusion of non-adsorbing impurity particles for both surface potentials was investigated and the concentration and dynamics of the impurity particles were analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.