Abstract
This paper considers a hierarchical Bayesian analysis of regression models using a class of Gaussian scale mixtures. This class provides a robust alternative to the common use of the Gaussian distribution as a prior distribution in particular for estimating the regression function subject to uncertainty about the constraint. For this purpose, we use a family of rectangular screened multivariate scale mixtures of Gaussian distribution as a prior for the regression function, which is flexible enough to reflect the degrees of uncertainty about the functional constraint. Specifically, we propose a hierarchical Bayesian regression model for the constrained regression function with uncertainty on the basis of three stages of a prior hierarchy with Gaussian scale mixtures, referred to as a hierarchical screened scale mixture of Gaussian regression models (HSMGRM). We describe distributional properties of HSMGRM and an efficient Markov chain Monte Carlo algorithm for posterior inference, and apply the proposed model to real applications with constrained regression models subject to uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.