Abstract
The evidence-based quantification of the relation between changes in movement quality and functionality can assist clinicians in achieving more effective structuring or adapting of therapy. In this paper, clinicians rated task, segment, and composite movement feature performance for 478 videos of stroke survivors executing upper extremity therapy tasks. We used the clinician ratings to develop a Hierarchical Bayesian Model (HBM) with task, segment, and composite layers for computing the statistical relation of movement quality changes to function. The model was enhanced through a detailed correlation graph (ΔHBM) that links computationally extracted kinematics with clinician-rated composite features for different task-segment combinations. Utilizing the weights and correlation graphs, we finally derive reverse cascading probabilities of the proposed HBM from kinematics to composite features, segments, and tasks. In a test involving 98 cases where clinician ratings differed, the HBM resolved 95% of these discrepancies. The model effectively aligned kinematic data with specific task-segment combinations in over 90% of cases. Once the HBM is expanded and refined through additional data it can be used for the automated calculation of statistical relations between changes in kinematics and performance of functional tasks and the generation of therapy assessment recommendations for clinicians. While our work primarily focuses on the upper extremities of stroke survivors, the HBM can be adapted to many other neurorehabilitation contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.