Abstract

We propose a Bayesian approach to multiple testing in disease mapping. This study was motivated by a real example regarding the mortality rate for lung cancer, males, in the Tuscan region (Italy). The data are relative to the period 1995–1999 for 287 municipalities. We develop a tri-level hierarchical Bayesian model to estimate for each area the posterior classification probability that is the posterior probability that the municipality belongs to the set of non-divergent areas. We show also the connections of our model with the false discovery rate approach. Posterior classification probabilities are used to explore areas at divergent risk from the reference while controlling for multiple testing. We consider both the Poisson-Gamma and the Besag, York and Mollié model to account for extra Poisson variability in our Bayesian formulation. Posterior inference on classification probabilities is highly dependent on the choice of the prior. We perform a sensitivity analysis and suggest how to rely on subject-specific information to derive informative a priori distributions. Hierarchical Bayesian models provide a sensible way to model classification probabilities in the context of disease mapping.

Highlights

  • Speaking, epidemiological surveillance consists of continuously gathering and analyzing data for changes in disease occurrence (Last, 2001)

  • standardized mortality ratio (SMR) from small areas will spread widely and the pattern will be narrow among larger areas

  • Intervals around the reference line are plotted as dashed lines corresponding to 95% percentiles of the null distribution and intervals adjusted for multiple comparison, using q-values thresholded at 5%, are plotted as solid lines

Read more

Summary

Introduction

Epidemiological surveillance consists of continuously gathering and analyzing data for changes in disease occurrence (Last, 2001). I.e. the study of the variability of disease occurrence on space, is a cornerstone of epidemiologic surveillance. A moderate to large number of area-level relative risks are considered. The large heterogeneity of population density among small areas leads to smaller p-values paradoxically associated with relative risk estimates closer to the null. Such inconsistency justified the development of shrinkage estimators (Clayton and Kaldor, 1987).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.