Abstract
In sets of count data, the sample variance is often considerably larger or smaller than the sample mean, known as a problem of over- or underdispersion. The focus is on hierarchical Bayesian modeling of such longitudinal count data. Two different models are considered. The first one assumes a Poisson distribution for the count data and includes a subject-specific intercept, which is assumed to follow a normal distribution, to account for subject heterogeneity. However, such a model does not fully address the potential problem of extra-Poisson dispersion. The second model, therefore, includes also random subject and time dependent parameters, assumed to be gamma distributed for reasons of conjugacy. To compare the performance of the two models, a simulation study is conducted in which the mean squared error, relative bias, and variance of the posterior means are compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.