Abstract
The energy landscape of protonated water clusters H(+)(H2O)n is thoroughly explored at the first-principle level using a hierarchical search methodology. In particular, the distinct configurational isomers of OSS2 empirical potential for n = 5-9 are uncovered and archived systematically using an asynchronous genetic algorithm and are subsequently refined with first-principle calculations. Using the OSS2 model, quantitative agreements in the thermal properties between Monte Carlo and harmonic superposition approximation (HSA) highlighted the reliability of the latter approach for the study of small- to medium-sized protonated water clusters. From the large sets of collected isomers, finite temperature behavior of the clusters can be efficiently examined at first-principle accuracy with the use of HSA. From the results obtained, evidence of structural changes from single-ring to treelike (n = 5-7) and multi-ring to single-ring structures (n = 7-9) is observed, as expected for the empirical model. Finally, the relevance of these findings to recent experimental data is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.