Abstract

We present a Domain Decomposition non-iterative solver for the Poisson equation in a 3-D rectangular box. The solution domain is divided into mostly parallelepiped subdomains. In each subdomain a particular solution of the non-homogeneous equation is first computed by a fast spectral method. This method is based on the application of the discrete Fourier transform accompanied by a subtraction technique. For high accuracy the subdomain boundary conditions must be compatible with the specified inhomogeneous right hand side at the edges of all the interfaces. In the following steps the partial solutions are hierarchically matched. At each step pairs of adjacent subdomains are merged into larger units. In this paper we present the matching algorithm for two boxes which is a basis of the domain decomposition scheme. The hierarchical approach is convenient for parallelization and minimizes the global communication. The algorithm requires O(N3elogeN) operations, where N is the number of grid points in each direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.