Abstract

This paper presents a hidden Markov model of credit quality dynamics, and highlights the use of filtering-based estimation methods for models of this kind. We suppose that the Markov chain governing the ‘true’ credit quality evolution is hidden in ‘noisy’ or incomplete observations represented by posted credit ratings. Parameters of the model, namely credit transition probabilities, are estimated using the EM algorithm. Filtering methods provide recursive updates of optimal estimates so the model is ‘self-calibrating’. The estimation procedure is illustrated with an application to a data set of Standard & Poor's credit ratings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.