Abstract

Eye-tracking provides an opportunity to generate and analyze high-density data relevant to understanding cognition. However, while events in the real world are often dynamic, eye-tracking paradigms are typically limited to assessing gaze toward static objects. In this study, we propose a generative framework, based on a hidden Markov model (HMM), for using eye-tracking data to analyze behavior in the context of multiple moving objects of interest. We apply this framework to analyze data from a recent visual object tracking task paradigm, TrackIt, for studying selective sustained attention in children. Within this paradigm, we present two validation experiments to show that the HMM provides a viable approach to studying eye-tracking data with moving stimuli, and to illustrate the benefits of the HMM approach over some more naive possible approaches. The first experiment utilizes a novel 'supervised' variant of TrackIt, while the second compares directly with judgments made by human coders using data from the original TrackIt task. Our results suggest that the HMM-based method provides a robust analysis of eye-tracking data with moving stimuli, both for adults and for children as young as 3.5-6 years old.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.