Abstract

Motivated by a study tracking the progression of Parkinson's disease (PD) based on features extracted from voice recordings, an inhomogeneous hidden Markov model with continuous state-space is proposed. The approach addresses the measurement error in the response, the within-subject variability of the replicated covariates and presumed nondecreasing response. A Bayesian framework is described and an efficient Markov chain Monte Carlo method is developed. The model performance is evaluated through a simulation-based example and the analysis of a PD tracking progression dataset is presented. Although the approach was motivated by a PD tracking progression problem, it can be applied to any monotonic nondecreasing process whose continuous response variable is subject to measurement errors and where replicated covariates play a key role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.