Abstract

A hexagonal porphyrin-based porous organic polymer, namely, CPF-1, was constructed by 3+2 ketoenamine condensation of the C2 -symmetric porphyrin diamine 5,15-bis(4-aminophenyl)-10,20-diphenylporphyrin and 1,3,5-triformylphloroglucinol. This material exhibits permanent porosity and excellent thermal and chemical stability. CPF-1 can be employed as a superior supporting substrate to immobilize Au nanoparticles (NPs) as a result of the strong interactions between Au NPs and the CPF support. An Au@CPF-1 hybrid was synthesized by an interfacial solution infiltration method with NaBH4 as reducing agent. Au NPs (5 nm) grew on CPF-1 and were distributed without aggregation. Moreover, Au@CPF-1 exhibits superior catalytic activity compared to many other reported Au-based catalysts for the reduction of 4-nitrophenol in the presence of NaBH4 . In addition, Au@CPF-1 has excellent stability and recyclability, and it can be reused for three successive reaction cycles without loss of activity. The dense distribution of phenyl rings on the channel walls of the CPF support can reasonably be regarded as the active sites that adsorb the 4-nitrophenol molecule through hydrogen-bonding and C-H⋅⋅⋅π interactions, as was confirmed by the X-ray structure of model compound DAPP-Benz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.