Abstract

Whale optimization algorithm (WOA) has received increasing attention in engineering optimization owing to its high computation efficiency, whereas, it has exhibited the drawback of premature convergence in solving multi-dimensional engineering global optimization problems. In this research, a niching hybrid heuristic whale optimization algorithm (NHWOA) is proposed to enhance convergence speed and search coverage in solving global optimization problems. In the algorithm, the niching technique is introduced to promote the diversity of population and restrain premature convergence in search of a global best solution. A heuristic adjustment to the parameters of the hybrid WOA algorithm is made to promote the exploration potential of search agents in the evolution. A designed perturbation to all the search agents’ positions is executed to avoid their falling into a local optimum. Optimization to the CEC2014 benchmark functions as validation cases are conducted along with comparisons to both conventional intelligent optimization algorithms and other state-of-the-art modified WOAs. Results indicate the effectiveness and superiority of NHWOA in solving the problems. Five practical engineering problems for global optimization with multiply variables are introduced to validate the performance of the presented algorithm with good performance results in the global computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.