Abstract
Objective:: The short video applications have achieved great success in recent years. The number of videos being shot and uploaded to these platforms has increased greatly. In this way, mining and recommending videos for users based on their interests have become a very difficult problem in these video distribution platforms. Under this case, it becomes particularly important to design efficient video recommendation algorithms for these platforms. In order to solve the problem faced by high sparsity and large scale data sets in the field of media big data mining and recommendation, a heuristic video recommendation algorithm for multi-dimensional feature analysis and filtering is proposed. Methods:: Firstly, the video features are extracted from multiple dimensions such as user behavior and video tags. Then, the similarity analysis is carried out, and the video similarity degree is calculated by weighting, so as to obtain the similar video candidate set, and filter the similar video candidate set. After that, the videos with the highest scores are recommended to users by sorting. Finally, the video recommendation algorithm proposed in this paper is implemented by using the C language. Results:: Compared with the benchmark, the proposed video recommendation algorithm has improved the accuracy by 6.1%-136.4%, the recall rate by 19.3%-30.9%, the coverage rate by 55.6%-59.5%, the running time by 42.7%-60.4%, and the cache hit ratio by 10.9%-47.4%. Conclusion:: The proposed algorithm can effectively and greatly improve the accuracy, recall rate, coverage rate, running time and cache hit ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Recent Advances in Computer Science and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.