Abstract

We present a synchronized routing and scheduling problem that arises in the forest industry, as a variation of the log-truck scheduling problem. It combines routing and scheduling of trucks with specific constraints related to the Canadian forestry context. This problem includes aspects such as pick-up and delivery, multiple products, inventory stock, multiple supply points and multiple demand points. We developed a decomposition approach to solve the weekly problem in two phases. In the first phase we use a MIP solver to solve a tactical model that determines the destinations of full truckloads from forest areas to woodmills. In the second phase, we make use of two different methods to route and schedule the daily transportation of logs: the first one consists in using a constraint-based local search approach while the second one is a hybrid approach involving a constraint programming based model and a constraint-based local search model. These approaches have been implemented using COMET2.0. The method, was tested on two industrial cases from forest companies in Canada.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.