Abstract

We propose a heuristic method of using network centralities for constructing small-weight Steiner trees in this paper. The Steiner tree problem in graphs is one of the practical NP-hard combinatorial optimization problems. Given a graph and a set of vertices called terminals in the graph, the objective of the Steiner tree problem in graphs is to find a minimum weight Steiner tree that is a tree containing all the terminals. Conventional construction methods make a Steiner tree based on the shortest paths between terminals. If these shortest paths are overlapped as much as possible, we can obtain a small-weight Steiner tree. Therefore, we proposed to use network centralities to distinguish which edges should be included to make a small-weight Steiner tree. Experimental results revealed that using the vertex or the edge betweenness centralities contributes to making small-weight Steiner trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.