Abstract

We propose a heuristic method to solve polynomial matrix equations of the type ∑k=1makXk=B, where ak are scalar coefficients and X and B are square matrices of order n. The method is based on the decomposition of the B matrix as a linear combination of the identity matrix and an idempotent, involutive, or nilpotent matrix. We prove that this decomposition is always possible when n=2. Moreover, in some cases we can compute solutions when we have an infinite number of them (singular solutions). This method has been coded in MATLAB and has been compared to other methods found in the existing literature, such as the diagonalization and the interpolation methods. It turns out that the proposed method is considerably faster than the latter methods. Furthermore, the proposed method can calculate solutions when diagonalization and interpolation methods fail or calculate singular solutions when these methods are not capable of doing so.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.