Abstract
A determinantal point process is a stochastic point process that is commonly used to capture negative correlations. It has become increasingly popular in machine learning in recent years. Sampling a determinantal point process however remains a computationally intensive task. This note introduces a heuristic independent particle approximation to determinantal point processes. The approximation is based on the physical intuition of fermions and is implemented using standard numerical linear algebra routines. Sampling from this independent particle approximation can be performed at a negligible cost. Numerical results are provided to demonstrate the performance of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.