Abstract
The linear sum assignment problem is a fundamental combinatorial optimisation problem and can be broadly defined as: given an $$n \times m, m \ge n$$n×m,mźn benefit matrix $$B = (b_{ij})$$B=(bij), matching each row to a different column so that the sum of entries at the row-column intersections is maximised. This paper describes the application of a new fast heuristic algorithm, Asymmetric Greedy Search, to the asymmetric version ($$n \ne m$$nźm) of the linear sum assignment problem. Extensive computational experiments, using a range of model graphs demonstrate the effectiveness of the algorithm. The heuristic was also incorporated within an algorithm for the non-sequential protein structure matching problem where non-sequential alignment between two proteins, normally of different numbers of amino acids, needs to be maximised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.