Abstract

It is suggested here a fast and easy to implement heuristic for the minimization of open stacks problem (MOSP). The problem is modeled as a traversing problem in a graph (Gmosp) with a special structure (Yanasse, 1997b). It was observed in Ashikaga (2001) that, in the mean experimental case, Gmosp has large cliques and high edge density. This information was used to implement a heuristic based on the extension-rotation algorithm of Pósa (1976) for approximation of Hamiltonian Circuits. Additionally, an initial path for Pósa's algorithm is derived from the vertices of an ideally maximum clique in order to accelerate the process. Extensive computational tests show that the resulting simple approach dominates in time and mean error the fast actually know Yuen (1991 and 1995) heuristic to the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.