Abstract

The doubly constrained entropy distribution/assignment (DEDA) problem that combines a gravity-based trip distribution (TD) problem and a traffic assignment (TA) problem has long been formulated as an optimization model and solved by two solution algorithms, i.e., partial- and full-linearization solution algorithms. As an alternative, this research first treats the DEDA problem by the augmented Lagrangian dual (ALD) method as the singly constrained entropy distribution/assignment (SEDA) problem, which in turn is addressed, via a tactical supernetwork representation, as an “extended” 1-origin-to-1-destination TA problem. A quick-precision TA solution algorithm, − called TAPAS (Traffic Assignment by Paired Alternative Segments), − is then adopted for solutions. The proposed approach is demonstrated with a numerical example for the correctness of the result, using Lingo 11 solver and the partial linearization solution (PLS) algorithm. Moreover, through the use of TAPAS in the innermost loop, the proposed approach also has the merit of generating unique path flow solution, which is very useful in route guidance under the intelligent transportation systems environment, among other academic applications. In addition, the proposed approach can be easily applied, or with minor modification at most, to various combined models in travel demand forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.