Abstract
Due to unforeseen problems, disruptions occur in passenger railway operations. Proper real-time crew management is needed to prevent disruptions to spread over space and time. Netherlands Railways has algorithmic support from a solver to obtain good crew rescheduling solutions during big disruptions. However, small disruptions are still manually solved by human dispatchers who have limited solving capacity. In this paper the rescheduling for crews during small disruptions is modeled as inserting an uncovered task in a feasible set of duties. The problem is solved as an iterative-deepening depth-first search in a tree. To reduce computation time, we use several ideas to prune unpromising parts of the tree. We have tested the heuristic on about 5000 test instances obtained from real-world data. These tests show that the heuristic delivers good and desirable rescheduling solutions within at most 2 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.