Abstract

The paper deals with the classical problem of minimizing the makespan in a two-machine flow shop. When the job processing times are deterministic, the optimal job sequence can be determined by applying Johnson’s rule. When they are independent and exponential random variables, Talwar’s rule yields a job sequence that minimizes the makespan stochastically. Assuming that the job processing times are independently and Weibull distributed random variables, we present a new job sequencing rule that includes both Johnson’s and Talwar’s rules as special cases. The proposed rule is applicable as a heuristic whenever the job processing times are characterized by their means and the same coefficient of variation. Simulation results show that it leads to very encouraging results when the expected makespan is minimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call