Abstract
We propose a clustering method which produces valid results while automatically determining an optimal number of clusters. The proposed method achieves these results with minimal user input, of which none pertains to a number of clusters. Our method's effectiveness in clustering, including its ability to produce valid results on data sets presenting nested or interlocking shapes, is demonstrated and compared with cluster validity analysis to other methods to which a known optimal number of clusters is provided, and to other automatic clustering methods. Depending on the particularities of the data set used, our method has produced results which are roughly equivalent or better than those of the compared methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.