Abstract

This work is based on a cosmological scenario of a universe dominated by phantom energy with equation of state parameter $w<-1$ and the analysis of its asymptotic behaviour in the far-future. The author discusses whether a Big Rip singularity could be reached in the future. Working in the context of general relativity, it is argued that the Big Rip singularity could be avoided due to the gravitational Schwinger pair-production, even if no other particle-creating contribution takes place. In this model, the universe is described in its far-future by a state of a constant but large Hubble rate and energy density, as well as of a constant but low horizon entropy. Similar conditions existed at the beginning of the universe. Therefore, according to this analysis, not only the Big Rip singularity could be avoided in the far-future but also the universe could asymptotically be led to a new inflationary phase, after which more and more universes could be created.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call