Abstract

In order to enhance integration between CAD and robots, wer propose a scheme to plan kinematically feasible paths in the presence of obstacles based on task requirements. Thus, the feasibility of a planned path from a CAD system is assured before the path is sent for execution. The proposed scheme uses a heuristic approach to deal with a rather complex search space, involving high-dimensional C-space obstacles and task requirements specified in Cartesian space. When the robot is trapped by the local minimum in the potential field related to the heuristic, a genetic algorithm is then used to find a proper intermediate location that will guide it to escape out of the local minimum. For demonstration, simulations based on using a PUMA-typed robot manipulator to perform different tasks in the presence of obstacles were conducted. The proposed scheme can also be used for mobile robot planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call