Abstract
A classification method, which comprises Fuzzy C-Means method, a modified form of the Huang-index function and Variable Precision Rough Set (VPRS) theory, is proposed for classifying labeled/unlabeled data sets in this study. This proposed method, designated as the MVPRS-index method, is used to partition the values of per conditional attribute within the data set and to achieve both the optimal number of clusters and the optimal accuracy of VPRS classification. The validity of the proposed approach is confirmed by comparing the classification results obtained from the MVPRS-index method for UCI data sets and a typical stock market data set with those obtained from the supervised neural networks classification method. Overall, the results show that the MVPRS-index method could be applied to data sets not only with labeled information but also with unlabeled information, and therefore provides a more reliable basis for the extraction of decision-making rules of labeled/unlabeled datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.