Abstract

The single-machine sequence-independent class setup scheduling problem is examined in this paper. It is assumed that jobs are classified into classes and a setup is required between jobs of different classes, but not of the same class. Furthermore, this setup time is fixed and depends only on the current job. Since the problem is NP-hard, a heuristic algorithm is proposed to find an approximate schedule that minimizes the maximum lateness on a set of jobs. The algorithm can easily be modified to solve the maximum tardiness problems as well. The accuracy of the heuristic algorithm in generating near optimal solutions is empirically evaluated. Scope and purposeFor batch manufacturing, it maybe desirable to produce many items of the same type, or class, at the same run in order to save the setup cost. However, committing facilities to long production runs for one product may inevitably make others tardy. Small batch size may conform urgent jobs to their delivery date, but one of the consequences would be the loss of productive efficiency due to numerous setups. Therefore, scheduling is basically a trade-off between the inherently conflicting efficiency measure and due-date compliance. This paper considers a single-machine scheduling problem in which jobs are classified into classes and a setup is required between jobs of different classes. The setup time is fixed and depends only on the current job. This problem is called a sequence-independent class setup problem and is NP-complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.