Abstract

We present a fast heuristic approach for solving a binary multiple instance learning (MIL) problem, which consists in discriminating between two kinds of item sets: the sets are called bags and the items inside them are called instances. Assuming that only two classes of instances are allowed, a common standard hypothesis states that a bag is positive if it contains at least a positive instance and it is negative when all its instances are negative. Our approach constructs a MIL separating hyperplane by preliminary fixing the normal and reducing the learning phase to a univariate nonsmooth optimization problem, which can be quickly solved by simply exploring the kink points. Numerical results are presented on a set of test problems drawn from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call