Abstract
We consider an extension of the capacitated Vehicle Routing Problem (VRP), known as the Vehicle Routing Problem with Backhauls (VRPB), in which the set of customers is partitioned into two subsets: Linehaul and Backhaul customers. Each Linehaul customer requires the delivery of a given quantity of product from the depot, whereas a given quantity of product must be picked up from each Backhaul customer and transported to the depot. VRPB is known to be NP-hard in the strong sense, and many heuristic algorithms were proposed for the approximate solution of the problem with symmetric or Euclidean cost matrices. We present a cluster-first-route-second heuristic which uses a new clustering method and may also be used to solve problems with asymmetric cost matrix. The approach exploits the information of the normally infeasible VRPB solutions associated with a lower bound. The bound used is a Lagrangian relaxation previously proposed by the authors. The final set of feasible routes is built through a modified Traveling Salesman Problem (TSP) heuristic, and inter-route and intra-route arc exchanges. Extensive computational tests on symmetric and asymmetric instances from the literature show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.