Abstract

Two-dimensional (2D) MXenes (transition metal carbide or carbonitride) and metal-organic frameworks (MOFs) have emerged as appealing electrode materials for supercapacitors due to the advantages of each material and a 2D structure. However, a solitary MXene or MOF suffers from either inadequate redox reactive sites or low electronic conductivity and instability. Here, NiCo-MOF/MXene heterostructures are fabricated by assembling ultrathin 2D bimetallic NiCo-MOF nanosheets on exfoliated MXene nanosheets by a simple room-temperature ultrasonic method. The 2D/2D NiCo-MOF/MXene heterostructures combine the advantages of a MOF, MXene and hierarchical structure, i.e. a large surface area, a highly electrically conductive network, rapid ion diffusion and structural stability. As a result, the optimal NiCo-MOF/M10 electrode exhibits a highly improved capacitance (1176.8 F g-1vs. 653.4 F g-1) and cycle life (72.5% vs. 50.5%), compared with the pristine NiCo-MOF. Moreover, a two-electrode cell using NiCo-MOF/M10 as the cathode shows outstanding energy storage capability. This study provides an opportunity to enhance energy storage by designing 2D heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.