Abstract

The most widely used two-stream architectures and building blocks for human action recognition in videos generally consist of 2D or 3D convolution neural networks. 3D convolution can abstract motion messages between video frames, which is essential for video classification. 3D convolution neural networks usually obtain good performance compared with 2D cases, however it also increases computational cost. In this paper, we propose a heterogeneous two-stream architecture which incorporates two convolutional networks. One uses a mixed convolution network (MCN), which combines some 3D convolutions in the middle of 2D convolutions to train RGB frames, another one adopts BN-Inception network to train Optical Flow frames. Considering the redundancy of neighborhood video frames, we adopt a sparse sampling strategy to decrease the computational cost. Our architecture is trained and evaluated on the standard video actions benchmarks of HMDB51 and UCF101. Experimental results show our approach obtains the state-of-the-art performance on the datasets of HMDB51 (73.04%) and UCF101 (95.27%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call