Abstract

AbstractA heterogeneous space–time full approximation storage (HFAS) multilevel formulation for molecular dynamics simulations is developed. The method consists of a waveform Newton smoothing that produces initial space–time iterates and a coarse model correction. The formulation is coined as heterogeneous since it permits different interatomic potentials to be applied at different physical scales. This results in a flexible framework for physics coupling. Time integration is performed in windows using the implicit Newmark predictor–corrector method that permits larger time integration steps than the explicit method. The size of the time steps is governed by accuracy rather than by stability considerations of the algorithm. We study three different variants of the method: the Picard iteration, constrained dynamics and force splitting. Numerical examples show that FAS based on force splitting provides significant time savings compared to standard explicit methods and alternative implicit space–time schemes. Parallel studies of the Picard iteration on harmonic problems illustrate the time parallelization effect that leads to a superior parallel performance compared to explicit methods. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.