Abstract

SummaryMany non‐homogeneous Poisson process software reliability growth models (SRGM) are characterized by a single continuous curve. However, failures are driven by factors such as the testing strategy and environment, integration testing and resource allocation, which can introduce one or more changepoint into the fault detection process. Some researchers have proposed non‐homogeneous Poisson process SRGM, but only consider a common failure distribution before and after changepoints. This paper proposes a heterogeneous single changepoint framework for SRGM, which can exhibit different failure distributions before and after the changepoint. Combinations of two simple and distinct curves including an exponential and S‐shaped curve are employed to illustrate the concept. Ten data sets are used to compare these heterogeneous models against their homogeneous counterparts. Experimental results indicate that heterogeneous changepoint models achieve better goodness‐of‐fit measures on 60% and 80% of the data sets with respect to the Akaike information criterion and predictive sum of squares measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.