Abstract

A nanoparticulate CeO2 catalyst is presented that is able to oxidize cyclohexane to K/A-oil (a mixture of cyclohexanone and cyclohexanol) using hydroperoxides as oxidizing species. The improvement in selectivity with decreasing particle size suggests the existence of a structure-activity relationship in this process, and points to a preferential activation of cyclohexane at defective corner or edge sites. A detailed theoretical study of the reaction mechanism over three different CeO2 catalyst models shows that cyclohexane is preferentially activated by bicoordinated oxygen atoms present at the edges of small particles, following a Mars van Krevelen mechanism which has been confirmed by in situ IR spectroscopy and 18O/16O isotopic exchange experiments. The process is fully heterogeneous, and the catalyst can be reused without loss of activity up to four cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.