Abstract

Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures. However, these CNNs often achieve poor robustness for image super-resolution (SR) under complex scenes. In this article, we present a heterogeneous group SR CNN (HGSRCNN) via leveraging structure information of different types to obtain a high-quality image. Specifically, each heterogeneous group block (HGB) of HGSRCNN uses a heterogeneous architecture containing a symmetric group convolutional block and a complementary convolutional block in a parallel way to enhance the internal and external relations of different channels for facilitating richer low-frequency structure information of different types. To prevent the appearance of obtained redundant features, a refinement block (RB) with signal enhancements in a serial way is designed to filter useless information. To prevent the loss of original information, a multilevel enhancement mechanism guides a CNN to achieve a symmetric architecture for promoting expressive ability of HGSRCNN. Besides, a parallel upsampling mechanism is developed to train a blind SR model. Extensive experiments illustrate that the proposed HGSRCNN has obtained excellent SR performance in terms of both quantitative and qualitative analysis. Codes can be accessed at https://github.com/hellloxiaotian/HGSRCNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.