Abstract

Hemoadhican (HD) is an exopolysaccharide with a branched structure that has been reported for its high hemostatic ability. In this study, a HD-based hemostatic sponge was prepared through ultrasonic dissolution and freeze-drying without using any cross-linking agent. The sponge could spontaneously cross-link using hydrogen bonds to form adhesive mud within 3 s upon contact with blood. This sponge-mud mixture adhered tightly to the wound tissue, forming a pressure-resistant physical barrier that captures and locks in blood cells and platelets. Simultaneously, the hydrophobic methyl groups of HD sponges repel blood inwardly, effectively sealing the wound. The brush-like structure of HD molecules was suspected to penetrate wet tissues through topological entanglement, thereby enhancing wet adhesion. Compared with gauze and gelatin sponges, HD sponges achieved more effective hemostasis in animal models using rat and rabbit femoral arteries. In particular, HD sponges showed excellent hemostasis in heparin-induced hemorrhage models in mice and pigs. The in vivo experiment demonstrated the excellent biosafety of the HD sponge. Conclusively, the HD sponge is a safe and efficient rapid hemostatic material that is expected to become an alternative material for clinical hemostatic procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.