Abstract
Sound in noise is better detected or understood if target and masking sources originate from different locations. Mammalian physiology suggests that the neurocomputational process that underlies this binaural unmasking is based on two hemispheric channels that encode interaural differences in their relative neuronal activity. Here, we introduce a mathematical formulation of the two-channel model – the complex-valued correlation coefficient. We show that this formulation quantifies the amount of temporal fluctuations in interaural differences, which we suggest underlie binaural unmasking. We applied this model to an extensive library of psychoacoustic experiments, accounting for 98% of the variance across eight studies. Combining physiological plausibility with its success in explaining behavioral data, the proposed mechanism is a significant step towards a unified understanding of binaural unmasking and the encoding of interaural differences in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.