Abstract

CENP-B has been suggested to organize arrays of centromere satellite DNA into a higher order structure which then directs centromere formation and kinetochore assembly in mammalian chromosomes. The N-terminal portion of CENP-B is a 15 kDa DNA binding domain (DBD) consisting of two repeating units, RP1 and RP2. The DBD specifically binds to the CENP-B box sequence (17 bp) in centromere DNA. We determined the solution structure of human CENP-B DBD RP1 by multi-dimensional 1H, 13C and 15N NMR methods. The CENP-B DBD RP1 structure consists of four helices and has a helix-turn-helix structure. The overall folding is similar to those of some other eukaryotic DBDs, although significant sequence homology with these proteins was not found. The DBD of yeast RAP1, a telomere binding protein, is most similar to CENP-B DBD RP1. We studied the interaction between CENP-B DBD RP1 and the CENP-B box by the use of NMR chemical shift perturbation. The results suggest that CENP-B DBD RP1 interacts with one of the essential regions of the CENP-B box DNA, mainly at the N-terminal basic region, the N-terminal portion of helix 2 and helix 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.