Abstract

The mitochondrial processing peptidase (MPP) in lower eucaryots and mammals is a matrix enzyme, whereas MPP in plants constitutes an integral part of the bc1 complex of the respiratory chain. The isolated spinach leaf bc1 complex catalyzes cleavage of the precursor of Nicotiana plumbaginifolia F1 beta subunit of the ATP synthase, resulting in a production of mature protein and a presequence that consists of 54 amino acids. A synthetic peptide derived from the C-terminal part of the presequence, containing 17 amino acids with a helical structural element, p-F1 beta(38-54), was an efficient inhibitor of the processing, whereas a peptide derived from the N-terminal part of the presequence, p-F1 beta(1-18), was much less effective. ATIII, a helical peptide derived from antithrombin III, was not recognized by MPP. Synthetic peptides corresponding to 4, 6, and 11 amino acids of the C terminus of the presequence, p-F1 beta(51-54), p-F1 beta(49-54), and p-F1 beta(44-54) were almost completely inert. Competition studies show that MPP recognizes the C-terminal domain of the presequence rather than the N-terminal domain. Furthermore, the alpha-helical element of the C-terminal domain is shown to be required for the recognition event.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.