Abstract

Heavy rainfall events often occur in Beijing during summer but rarely in autumn. However, during 3–5 September 2015, an exceptionally heavy rainfall event occurred in Beijing. Based on the reanalysis data and the Weather Research and Forecasting (WRF) model simulations, the main contributing factors and the predictability of this heavy rainfall event were examined through comprehensive analyses of vorticity advection and water vapor transport/ budget. The results indicate that a “high-in-the-east–low-in-the-west” pattern of 500-hPa geopotential height over the Beijing area played an important role. The 850-hPa low-level jet (LLJ) provided a mechanism for rising motion and transported abundant water vapor into the Beijing area. Two-way nested hindcast experiments using WRF well reproduced the atmospheric circulation and LLJ. Quantitative analysis indicates that the WRF model with the rapid update cycle (RUC) land surface scheme and the single-moment 6-class (WSM6) microphysics scheme exhibited the best skill, and the model performance improved with a higher resolution. Further analysis indicates that the bias in the precipitation forecast was caused by the bias in water vapor transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.