Abstract

A microchannel chip for continuous-flow polymerase chain reaction (PCR) was developed using transparent materials. The microchannel was fabricated on a quartz glass substrate using standard photolithography and wet-etching techniques and was sealed by another quartz glass substrate. Two indium-tin-oxide (ITO) films were deposited on the etched substrate as a thermal source. To confirm the temperature distribution in the microchannel, we measured the fluorescence spectra of an aqueous solution of 1-pyrenesulfonic acid sodium salt (PS-Na), which is a temperature-indicator dye, in the microchannel under a continuous solution flow. The results confirm that the temperature distribution on the microchannel’s ITO films was almost uniform (within ±2 °C) under two flow rates (56 and 152 nl/min). The slightness of this deviation indicates that the ITO films integrated into the microchannel chip can be very useful as a thermal source for PCR. An amplification of a 450 bp segment of Escherichia coli HB101 was successfully performed by two-stage (94 and 67 °C) thermal cycling on the chip device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.