Abstract
The Van Wagner crown scorch model is widely used to estimate crown component necroses in surface fires. The model is based on buoyant plume theory but accounts for crown heat transfer processes using an empirical proportionality factor k. Crown scorch estimates have used k values for foliage, but k varies with heat transfer characteristics, and branch and bud necroses are more relevant to tree mortality. This paper derives and validates a more physically complete model of crown scorch in surface fires (I ≤ 2500 kW·m–1). The model links a buoyant plume model with a lumped capacitance heat transfer analysis applicable to branches, buds, and foliage (~1 cm maximum diameter). The lumped capacitance analysis is validated with vegetative-bud heating experiments, and the entire heat transfer model of crown scorch is validated with fireline intensity and foliage necrosis data. The model is more general than the Van Wagner model and is independent of experimental fire data. Predictions require measurements of fireline intensity, residence time, ambient temperature, and five thermophysical properties of crown components. The model predicts differences between bud and foliage necrosis heights, and illustrates why heat transfer processes should be considered in crown scorch models.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.