Abstract

High heat transfer coefficient (HTC) and critical heat flux (CHF) are achieved in liquid film boiling by coupling vibrant vapor bubbles with a capillary liquid film, which has thus received increased interest for thermal management of high-power electronics. Although some experimental progress has been made, a high-fidelity heat transfer model for liquid film boiling is lacking. This work develops a thermal-hydrodynamic model by considering both evaporation atop the wick and nucleate boiling inside the wick to simultaneously predict the HTC and CHF. Nucleate boiling is modeled with microlayer evaporation theory, where a unified scaling factor is defined to characterize the change of microlayer area with heat flux. The scaling factor η is found to be independent of wicking structure and can be determined from a few measurements. This makes our model universal to predict the liquid film boiling heat transfer for various micro-structured surfaces including micropillar, micropowder, and micromesh. This work not only sheds light on understanding fundamental mechanisms of phase-change heat transfer, but also provides a tool for designing micro-structured surfaces in thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.